Publique su nota aquí (Colaborador@ Registrado)
Este es su espacio para publicar contenido, compartir experiencias, distribuir noticias, hacer comentarios sobre literatura, plantear preguntas, solicitudes de ayuda, sugerencias, apoyo a sus cursos, proyectos en marcha, recursos bibliográficos, etc, cualquier cosa sobre la Morfometría en general!

Todos puen colaborar, una vez que se han registrado. Para registrarse como "colaborador", envíe su email a la Editora.

Contenido más reciente:

6 de enero de 2010

Lo destacado en la literatura reciente

The Concept of Morphospaces in Evolutionary and Developmental Biology: Mathematics and Metaphors

Philipp Mitteroecker
Department of Theoretical Biology, University of Vienna, Vienna, Austria.

Simon M. Huttegger
Department of Logic and Philosophy of Science, University of California, Irvine, Irvine, CA, USA.

Biological Theory. Winter 2009, Vol. 4, No. 1, Pages 54-67
Posted Online December 29, 2009.
(doi:10.1162/biot.2009.4.1.54)
© 2009 Konrad Lorenz Institute for Evolution and Cognition Research
MIT Press Journals - Biological Theory -


Abstract

Formal spaces have become commonplace conceptual and computational tools in a large array of scientific disciplines, including both the natural and the social sciences. Morphological spaces (morphospaces) are spaces describing and relating organismal phenotypes. They play a central role in morphometrics, the statistical description of biological forms, but also underlie the notion of adaptive landscapes that drives many theoretical considerations in evolutionary biology. We briefly review the topological and geometrical properties of the most common morphospaces in the biological literature. In contemporary geometric morphometrics, the notion of a morphospace is based on the Euclidean tangent space to Kendall's shape space, which is a Riemannian manifold. Many more classical morphospaces, such as Raup's space of coiled shells, lack these metric properties, e.g., due to incommensurably scaled variables, so that these morphospaces typically are affine vector spaces. Other notions of a morphospace, like Thomas and Reif's (1993) skeleton space, may not give rise to a quantitative measure of similarity at all. Such spaces can often be characterized in terms of topological or pretopological spaces.

The typical language of theoretical and evolutionary biology, comprising statements about the “distance” among phenotypes in an according space or about different “directions” of evolution, is not warranted for all types of morphospaces. Graphical visualizations of morphospaces or adaptive landscapes may tempt the reader to apply “Euclidean intuitions” to a morphospace, whatever its actual topology might be. We discuss the limits of metaphors such as the developmental hourglass and adaptive landscapes that ensue from the geometric properties of the underlying morphospace.

No hay comentarios:

Publicar un comentario

Publicar contenido: