Publique su nota aquí (Colaborador@ Registrado)
Este es su espacio para publicar contenido, compartir experiencias, distribuir noticias, hacer comentarios sobre literatura, plantear preguntas, solicitudes de ayuda, sugerencias, apoyo a sus cursos, proyectos en marcha, recursos bibliográficos, etc, cualquier cosa sobre la Morfometría en general!

Todos puen colaborar, una vez que se han registrado. Para registrarse como "colaborador", envíe su email a la Editora.

Contenido más reciente:

24 de octubre de 2016

Course GM in R, Jan 23-27, Barcelona: early bird extended

Dear colleagues,

Early bird registration has been extended to November 30th for the course "Geometrics Morphometrics in R".

Dates: January 23th-27th, 2017.

Instructor: Dr. Julien Claude (Institut des Sciences de l'Évolution de Montpellier, France), author of Morphometrics with R (http://www.springer.com/us/book/9780387777894). 

PLACE:  Facilities of the Centre de Restauració i Interpretació Paleontologica, Els Hostalets de Pierola, Barcelona (Spain). 


PROGRAM: 
Monday, January 23rd, 2017.
1. An Introduction to R / Image Processing / Organizing Morphometric Data.
1.1. Some Basics in R.
1.1.1. The R Environment.
1.1.2. R objects, Assigning, Indexing.
1.1.3. Generating Data in R.
1.1.4. 2D and 3D Plots in R; Interacting with the Graphs.
1.2. Organizing Data for Morphometrics.
1.2.1. Data-frame, Array and List.
1.2.2. Converting and Coercing Objects.
1.2.3. Read and Write Morphometric Data in R.
1.3. Image Processing in R.
1.3.1. Reading Various Image Files.
1.3.2. Obtaining Image Properties.
1.3.3. Modifying Image Properties: Contrast, Channels, Saturation Directly from R or by Interfacing R with Imagemagick.
1.4. Simple Tests, Simple Linear Modelling, Alternatives to Linear Modelling, an example using traditional morphometrics.
1.4.1. Defining size and shape using PCA and log-shape ratio approaches.
1.4.2. Getting stats and test outputs.
1.4.3. Testing assumptions of linear modelling.
1.4.4. Testing for allometry and isometry.
1.4.5. Solutions when assumptions of linear modelling are not met.

Tuesday, January 24th, 2017.
2. Landmark data.
2.1. Acquiring Landmark Data in R.
2.2. Plotting Landmark Configurations in 2 and in 3D.
2.2.1. Using Different Symbols and Setting the Graphical Parameters.
2.2.2. Labeling Landmarks.
2.3. Geometric Transformation with Landmark Configurations.
2.3.1. Translation.
2.3.2. Scaling using Baseline or Centroid Size.
2.3.3. Rotation.
2.4. Superimposing and Comparing Two Shapes.
2.4.1. Baseline Superimposition.
2.4.2. Ordinary Least Squares Superimposition.
2.4.3. Resistant Fit.
2.5. Representing Shape Differences.
2.5.1. Plotting Superimposed Shape with Wireframe.
2.5.2. Lollipop Diagrams and Vector Fields.
2.5.3. Thin Plate Splines and Warped Shapes.
2.6. Superimposing More Than Two Shapes.
2.6.1. Baseline Registration.
2.6.2. Full Generalized Procrustes Analysis.
2.6.3. Partial Generalized Procrustes Analysis.
2.6.4. Dimensionality of Superimposed Coordinates.

Wednesday, January 25th, 2017.
2.7. Exploring Shape Variation and Testing Hypotheses.
2.7.1. PCA.
2.7.2. Multivariate Linear Modelling (Multivariate Regression and MANOVA).
2.7.3. Allometry free approaches (Burnaby correction).
2.7.4. Linear discriminant and Canonical Analysis.
3. Outlines.
3.1. Acquiring outline Data in R.
3.2. Fourier Analysis.
3.2.1. Principles.
3.2.2. Fourier Analysis of the Tangent Angle.
3.2.3. Radius Fourier Analysis.
3.2.4. Elliptic Fourier Analysis.
3.2.5. Reduction of Shape Variables.
3.2.6. Statistical Analysis of Shape Variation with Fourier Analysis.
3.2.6.1. Exploring Shape Variation and Testing Hypotheses.
3.2.6.2. PCA.
3.2.6.3. Multivariate Linear Modelling (Multivariate Regression and MANOVA).
3.2.6.4. Canonical Analysis.

Thursday, January 26th, 2017.
3.3. Combining Landmarks and Curves.
3.3.1. Hybrid Methods between Fourier and Procrustes Analysis.
3.3.2. Sliding Semi Landmarks.
3.4. Solutions for Open Curves.
4. Specific Applications.
4.1. Testing Measurement Error.
4.2. Partitional Clustering.
4.2.1. K-means, Partition Around Medoids.
4.2.2. Mclust.
4.2.3. Combining Genetic, Geographic and Morphometric Data.

Friday, January 27th, 2017.
4.3. Modularity / Integration Studies.
4.3.1. Two-block Partial Least Squares.
4.3.2. Testing Among Various Sets of Modules.
4.4. Fluctuating Asymmetry and Directional Asymmetry.
4.4.1. Inter-Individual and Intra-Individual Variation.
4.4.2. Object and Matching Symmetry.
4.5. Bending Energy, Uniform and Non-uniform Shape Variation.

This course is organized by Transmitting Science, the Institut Català de Paleontologia and the Centre de Restauració i Interpretació Paleontologica.

No hay comentarios:

Publicar un comentario

Publicar contenido: